Course curriculum
-
1
Computer Vision Basics
-
L01 - Computer Vision
-
L02 - Edge Detection
-
-
2
Exploring the CNN architecture
-
L03 - Pooling and Padding
-
L04 - Convolutions
-
-
3
Special Convolution Layers
-
L05 - Resnets
-
L06 - 1*1 Convolutions
-
L07 - Inception Networks
-
L08 - Transfer Learning
-
-
4
Object Detection Techniques
-
L09 - Bounding box
-
L10 - YOLO
-
L11 - Face Recognition Techniques
-
-
5
Natural Language Processing
-
L12 - N-gram models
-
L13 - Word2Vec models
-
L14 - Topic Modeling
-
-
6
Introduction to Sequence Models
-
L15 - Types of architecture, Use cases
-
L16 - RNNs : Propagation through time
-
-
7
Advanced Sequence Models
-
L17 - Gated Recurrent Unit
-
L18 - Long Short Term Memory Networks
-
L19 - Bi-directional LSTM
-
L20 - Deep RNNs
-
L21 - Attention Mechanism
-
L22 - Speech Recognition
-
-
8
Unsupervised Neural Networks
-
L23 - Boltzmann Machines
-
L24 - Self Organizing Maps
-
L25 - AutoEncoders
-
-
9
Capstone Project
-
L26 - Face Recognition
-
L27 - Modeling Approaches
-
-
10
Get Job Ready
-
L28 - Writing Capstone Project in your Resume
-
L29 - Nailing your Data Science Interviews
-
L30 - One-on-One Mock Interview
-